Home

Realtor

Algebra ALEKS Topics

Algebra Notes

Algebra Reviews

MAT0028

MAC1105

MGF ALEKS Topics

MGF Reviews

MGF Notes

STA2023

Stats ALEKS Topics

Stats Notes

Stats Reviews

College Algebra / Module 12 - Transformations

Topic 1: Translating the graph of a parabola: Two steps

Problem 1: The graph of $y = x^2$ is translated 2 units to the right and 3 units down.

Write the equation of the new parabola and sketch its graph.

Problem 2: Sketch the graph of $y = x^2$ shifted 1 unit left and 4 units up. Provide the equation of the transformed parabola.

Topic 2: Translating the graph of an absolute value function: One step

Problem 1: The graph of y = |x| is translated 5 units up. Write the equation of the new function and sketch its graph.

Problem 2: Sketch the graph of y = |x| shifted 3 units to the left. Provide the equation of the transformed absolute value function.

Topic 3: Translating the graph of an absolute value function: Two steps

Problem 1: The graph of y = |x| is translated 2 units right and 1 unit down. Write the equation of the new function and sketch its graph.

Problem 2: Sketch the graph of y = |x| shifted 4 units left and 2 units up. Provide the equation of the transformed function.

Topic 4: How the leading coefficient affects the graph of an absolute value function Problem 1: Compare the graphs of y = 2|x| and y = (1/2)|x| to y = |x|. Describe how the leading coefficient affects the shape of the graph.

Problem 2: Explain the effect of the leading coefficient in y = -3|x| compared to y = |x|. Sketch both graphs to illustrate the differences.

Topic 5: Translating the graph of a function: Two steps

Problem 1: The graph of $f(x) = x^3$ is translated 3 units to the left and 2 units up.

Write the equation of the transformed function and sketch its graph.

Problem 2: Sketch the graph of $f(x) = \sqrt{x}$ shifted 1 unit right and 3 units down. Provide the equation of the transformed function.

Topic 6: Transforming the graph of a function by reflecting over an axis

Problem 1: Reflect the graph of $f(x) = x^2$ over the x-axis. Write the equation of the new function and sketch its graph.

Problem 2: Reflect the graph of $f(x) = x^3$ over the y-axis. Provide the equation of the transformed function and sketch its graph.

Topic 7: Transforming the graph of a quadratic, cubic, square root, or absolute value function

Problem 1: Transform the graph of $f(x) = \sqrt{x}$ by reflecting over the x-axis and shifting 2 units up. Write the equation and sketch the transformed graph.

Problem 2: For $f(x) = x^2$, apply a vertical stretch by a factor of 3 and a shift 1 unit left. Provide the equation and sketch the resulting graph.

Topic 8: How the leading coefficient affects the shape of a parabola

Problem 1: Compare the graphs of $y = 3x^2$, $y = (1/3)x^2$, and $y = x^2$. Describe how the leading coefficient affects the width of the parabola.

Problem 2: Explain the effect of the leading coefficient in $y = -2x^2$ compared to $y = x^2$. Sketch both parabolas to show the differences in shape.

Topic 9: Determining whether two functions are inverses of each other

Problem 1: Determine if f(x) = 2x + 3 and g(x) = (x - 3)/2 are inverses of each other. Compute $(f \square g)(x)$ and $(g \square f)(x)$ to verify.

Problem 2: Check if $f(x) = x^3$ and $g(x) = \Box x$ are inverses. Show the composition of both ($f \Box g$)(x) and ($g \Box f$)(x) and confirm the result.

Tags Archive RSS feed Youtube QR Code email akennon@fscj.edu with any issues on this website