College Algebra / Module 1 - Linear Equations

Home Realtor

Algebra ALEKS Topics

Algebra Notes

Algebra Reviews

MAT0028

MAC1105

MGF ALEKS Topics

MGF Reviews

MGF Notes

STA2023

Stats ALEKS Topics

Stats Notes

Stats Reviews

Module 1 - Linear Equations

Topic 1: Additive property of equality with signed fractions

1. Solve for x: x + (-2/5) = 3/10: x = 7/10.

Watch on

1. If y + 1/3 = -5/6, find y: y = -7/6.

Topic 2: Multiplicative property of equality with signed fractions

1. Solve for x: (-3/4)x = 9/8: x = -3/2.

$$\frac{8^{2} \cdot \frac{3}{4}x = \frac{9}{8}}{-6x = 9}$$

$$\frac{-6x = 9}{-6}$$

$$x = \frac{9}{-6}$$

$$x = \frac{-9}{6}$$

1. If (2/5)y = -4/15, find y: y = -2/3.

Topic 3: Solving a multi-step equation given in fractional form

1. Solve for x: (2x + 1)/3 = 5: **x = 7**.

$$3(2x+1) = 53$$

 $2x+1 = 15$

$$\frac{x}{2} = \frac{1}{2}$$

$$x = 7$$

1. If (3y - 2)/4 = 2, find y: y = 10/3.

Topic 4: Solving a linear equation with several occurrences of the variable: Variables on the same side and distribution

1. Solve for x: 3(x + 2) + 2x = 16: x = 2.

$$3(x+2) + 2x = 16$$

 $3x+6+2x=16$
 $5x+6=16$
 -6
 $5x=0$

1. If 2(y - 3) + 4y = 12, find y: y = 3.

Topic 5: Solving a linear equation with several occurrences of the variable: Variables on both sides and two distributions

1. Solve for x: 2(x + 1) = 3(x - 2): x = 8.

$$2(x+1) = 3(x-2)$$

$$2x+2 = 3x - 6$$

$$-2x + 6 - 2x + 6$$

$$8 = x$$

1. If 4(y - 1) = 2(2y + 3), find y: y = 5.

Topic 6: Solving for a variable in terms of other variables using multiplication or division: Basic

1. Solve for x in terms of y: 5x = 2y: x = (2/5)y.

$$\frac{5x}{5} = \frac{2y}{5}$$
 Solve for x

1. If 3z = w, solve for z in terms of w: z = w/3.

Topic 7: Solving for a variable in terms of other variables using multiplication or division: Advanced

1. Solve for x in terms of y and z: 2x = 3y - z: x = (3y - z)/2.

$$\frac{2x = 3y - 2}{2}$$
 Solution x

1. If 4a = 2b + c, solve for a in terms of b and c: a = (2b + c)/4.

Topic 8: Solving for a variable in terms of other variables using addition or subtraction with division

1. Solve for x in terms of y: (x + 2y)/3 = 4: x = 12 - 2y.

$$\frac{x+2y}{3} = 4^{2}$$
 Solve for x
$$\frac{x+2y}{3} = 12$$
$$\frac{-2y}{3} = 12$$
$$\frac{-2y}{3} = 12 - 2y$$

1. If (z - w)/2 = 5, solve for z in terms of w: z = 10 + w.

Topic 9: Solving a decimal word problem using a linear equation of the form Ax + B = C

1. A phone plan costs \$0.15 per minute plus a \$5 base fee. If the total bill is \$12.50, how many minutes were used: **50 minutes**.

$$0.15 \times + 5 = 12.50$$

$$0.15 \times + 5 = 12.50$$

$$0.15 \times + 5 = 12.50$$

1. A taxi ride costs \$2.25 per mile plus a \$3.50 base fare. If the total cost is \$10.25, how many miles were traveled: **3 miles**.

Topic 10: Solving a one-step word problem using the formula d = rt

1. A car travels at 60 mph for 2 hours. Find the distance traveled using d = rt: **d = 120 miles**.

$$J = rt$$
 $J = distance = ?$
 $J = 60(2)$
 $J = 120 \text{ miles}$
 $J = 60(2)$
 $J = 120 \text{ miles}$
 $J = 60(2)$
 $J = 120 \text{ miles}$

 A cyclist rides at 15 mph for 3 hours. Calculate the distance using d = rt: d = 45 miles.

Topic 11: Finding the sale price given the original price and percent discount

1. A shirt originally costs \$40 and is discounted by 20%. Find the sale price: \$32.

$$40 (0.20) = 8$$
 $40 - 8 = 32$
 $0 = 32$
 $0 = 32$

1. A laptop priced at \$800 has a 15% discount. Calculate the sale price: **\$680**.

Topic 12: Finding the total cost including tax or markup

1. A \$50 item has a 6% sales tax. Find the total cost including tax: \$53.

$$50 (0.06) = 3$$

$$50 (1.06) = 53$$

$$00 = 50 (1.06) = 53$$

$$00 = 60 (1.06) = 53$$

$$00 = 60 (1.06) = 53$$

$$00 = 60 (1.06) = 53$$

1. A store marks up a \$30 item by 25%. Calculate the total cost including markup: **\$37.50**.

Topic 13: Finding the original price given the sale price and percent discount

1. A jacket's sale price is \$48 after a 20% discount. Find the original price: **\$60**.

$$\frac{48}{0.8} = 60$$

1. A phone's sale price is \$170 after a 15% discount. Calculate the original price: **\$200**.